
Nordic Journal of African Studies 14(4): 479 – 491 (2005)

Toward a Widely Usable Finite-State
Morphology Workbench for Less Studied

Languages — Part I: Desiderata
ANSSI YLI-JYRÄ

University of HelsinkiandCSC - Scientific Computing Ltd.

ABSTRACT

Most of the world’s languages lack electronic word form dictionaries. The linguists who
gather such dictionaries could be helped with an efficient morphology workbench that adapts
to different environments and uses. A widely usable workbench could be characterized,
ideally, asgenerally applicable, extensible, andfreely available (GEA). It seems that such
a solution could be implemented in the framework of finite-state methods. The current work
defines the GEA desiderata and starts a series of articles concerning these desiderata in finite-
state morphology. Subsequent parts will review the state of the art and present an action plan
toward creating a widely usable finite-state morphology workbench.

Keywords: computational morphology, lexical resources, finite-state methods

1 INTRODUCTION

There is a fundamental need for acommon research infrastructure for natural
language processing. In relation to this, the current work motivates some desider-
ata for widely usable finite-state based methodology for representing morphological
knowledge.

Digital knowledge bases of the morphology of languages –computational lex-
iconsandmorphological grammarsare foundational resources for many language
technology applications (Daille et al., 2002; Beesley, 2004). They have important
applications in written communication, multi-lingual learning environments, speech
interfaces, information management tools, and translation of closely related lan-
guages. The advent of such utilities as spellers, dictionaries and lemmatizers have
already opened new possibilities for internationalization of the basic IT infrastruc-
ture, value-added information services and linguistic research.

There is still a large number ofless studied languages(Oflazer and Nirenburg,
2003) that have not been a subject of study in the discipline of Human Language
Engineering. Morphological knowledge bases could still be built for some 7000
natural languages of the world, and to even more dialects and stylistic varieties of
languages. We are currently close to the point where we could demonstrate that 100
languages have been studied in the framework of computational morphology, but
only a portion of these languages have comprehensive computational lexicons.



Nordic Journal of African Studies

Nevertheless, construction of linguistically adequate lexicons for less studied
languages requires a lot of human effort. The need to rationalize the human work
prompts development of a computerized workbench that could help the linguists
create lexicons more efficiently if not fully automatically. Although some lexicons
and morphological grammars can be learned automatically from texts (Itai, 1994;
Yarowsky and Wicentowski, 2000; Creutz et al., 2005) fully automatic or unsuper-
vised methods are not sufficient. This is due to two reasons. First, the amount of
freely available corpora is limited for many of the less studied languages. Second,
many of the less studied languages have rich morphologies that are difficult to learn
accurately with unsupervised methods.

The article is structured as follows. The next two sections describe the need for
common workbench infrastructure in computational morphology. In section 4, we
operationalize the wide usability of a finite-state morphology workbench in terms of
three desiderata: generality, extensibility and availability. In section 5, we propose
a licensing model to be adopted in the software development and discuss strategies
for software patents. In section 6, we describe our ongoing research on the paper’s
topic. We conclude with section 7.

2 LINGUISTIC PREFERENCESAREDIVERSE

The tools for constructing new lexicons should adapt to different linguistic applica-
tions. For example, a field linguist building a lexicon or a dictionary of a less studied
language needs methodological workbench that helps him or she to be very effective
in the lexicon building task, but also in creation of ahuman-readable linguistic
descriptionsof the morphology and phonology of the language. Some interactive
tools for field linguists and lexicographers exist (ShoeBox/Toolbox, WordManager,
etc.), but many of them fail to include an adequate support for description of mor-
phology and phonology. Other users of a morphology workbench would emphasize
the need for automatic compilers that produce spellers and other simple applications
from linguistic descriptions and lexical databases. These users are interested in the
performance of the resultingcomputational utilities rather than linguistic elegance.
The nature of such utilities vary from spell checking to generation and analysis of
phonetic forms in speech processing.

Mechanisms for linguistic description of word forms has been a long-term re-
search area in general linguistics and computational linguistics. As early as in the
5th century B.C., an ancient grammarian, Pān. ini1 invented a very powerful rule for-
malism (Deo, 2005). With the formalism, he described Sanskrit morphology with
3959 rules. In the modern times, the quest for the most appropriate methodology
for morphological description has inspired new linguistic theories. In addition to
three cardinalmodels of morphology(Item and Arrangement, Item and Process,

1http://en.wikipedia.org/wiki/Panini_(scholar)

480



Widely Usable Morphology Workbench: Desiderata

and Word and Paradigm) (Hockett, 1954; Matthews, 1974), there arephonological
theories (e.g. Generative Phonology, Declarative Phonology, Optimality Theory,
Auto-Segmental Phonology). Computational models (e.g. Finite-State Morphol-
ogy, Unification Morphology, Functional Morphology, DATR Morphology) employ
simple mechanisms, such as functions, feature structure unification andfinite trans-
ducers(also known as generalized sequential machines).

Theoretically, finite transducers are inferior to the rewriting system used in Gen-
erative Phonology. In early 1970’s, C. Douglas Johnson made, however, a practically
significant discovery:

There seem, in fact, to be few phonological processes that exceed the
capacity of finite transducers; the ones known to me belong to the very
restricted types to be discussed in Chapter 7. (Johnson 1972:56).

The restriction discovered by Johnson surfaced in computational linguistics only
after an independent re-discovery of the same restriction in 1981 (see Kaplan and
Kay 1994): Kaplan and Kay had designed a transducer compiler for a restriction of
Generative Phonology, thus creating afinite-state based programming language
for linguists.

Kaplan and Kay’s experiments on a finite-state based programming language
for phonological rules shaped the work of Koskenniemi (1983). Koskenniemi re-
jected generative formalism and adopted a different theoretical framework, a two-
level grammar that is now known as Two-Level Morphology. Today, Koskenniemi’s
Two-Level Morphology (Koskenniemi, 1983, 1984) and the more general frame-
work of finite transducers (Kaplan and Kay, 1994; Karttunen et al., 1992; Karttunen,
1994, 1993; Beesley and Karttunen, 2003) are undoubtedly the most successful ap-
proaches in computational morphology and phonology, providing a well-understood
solution for efficient compilation and representation of computational lexicons of
word forms. Currently, there are efficient techniques – flag diacritics and compile
and replace algorithm – that can handle even non-concatenative morphology.

The technology build on the notion of finite transducers could be used also by
general linguists. The need to facilitate linguists at their work has inspired a num-
ber of interactive computational workbenches for doing morphology and phonology
(Ashby et al., 2001; Bird and Ellison, 1992; Maxwell, 1999; Maxwell et al., 2002;
Maxwell, 2003; Bharati et al., 2004; Ńemeth et al., 2004; Novák, 2004).2. If compu-
tational models based on finite transducers were embedded to an interactive gram-
mar development environment, the well-defined calculus of finite transducers could
be used for validation of human-readable grammars. At the same time, it would
be crucial that the development environment would abstract away from the low level
notions of the finite-state framework that are not familiar to typical general linguists.

2Some of the tools mentioned in these bibliographical references are not based on the finite-state
framework.

481



Nordic Journal of African Studies

Obviously, a widely usable workbench should be suitable for different tasks re-
gardless of linguistic preferences and approaches, ranging from interactive use by
pure linguists to applied language engineering.

3 BUSINESSCONTEXTSAREDIVERSE

There are now many finite-state based programming languages (e.g. XFST regular
expressions, SFST, LEXC, FSA Utilities) and finite-state based implementations of
phonological and morphological theories for lexicon building. Nevertheless, none
of them seems to be prevailing at the moment. Apart from the diversity of linguistic
preferences in the field, this has to do with the fact that there are both commercially
important and commercially less important languages, as well as different user com-
munities:

1. Commercial userscreate proprietary resources — they aim at optimized prod-
ucts with high efficiency and coverage.

2. Academic linguistswrite human-readable grammars of languages — they are
interested in linguistic elegance and application of linguistic theories.

3. Open source developerscreate free lexical resources — they are aim at inde-
pendent and open standards3 and fast development of lexicons.

It seems to me that the traditional division to commercially important and com-
mercially less important languages is no more clear-cut. On one hand, new resources
for commercially important languages are becoming publicly available.4,5 This hap-
pens because of the growing awareness of common good in establishing shared re-
search infrastructures (see e.g. Raffenspenger 2004). On the other hand, minority
languages have influenced commercial software development by accelerating their
internationalization. For example, spell checking capabilities of word-processing
software are being extended to these languages sometimes before the official lan-
guages of the same countries.

The following metaphor illustrates why the infrastructure for creating electronic
lexicons of the languages in the world must be made available freely to the public:

The availability of good things should grow according to their impor-
tance rather than vice versa: human creatures need oxygen too much to
pay for it, but they can pay something for a car.

Obviously, a widely usable morphology workbench should be usable in different
situations ranging from open-source projects to proprietary projects.

3See e.g. the OpenDocument standard (http://en.wikipedia.org/wiki/Opendocument ).
4http://www-igm.univ-mlv.fr/˜unitex/linguistic_data.html
5http://www.lexique.org/outils/Lexique-BRMIC.pdf

482



Widely Usable Morphology Workbench: Desiderata

4 THE DESIDERATA

In order to operationalize the degree of wide usability of the morphology workbench,
we will split the criterion of wide usability of the workbench into three parallel
desiderata as follows:

1. Generality: The workbench should be generally applicable both from the
application point of view as well as from the point of view of compatibility. In
other words, the workbench should reflect generality in the following ways.

(a) Applicability

• It supports creating an adequate description of any language.

• It is an attractive tool for general linguists.

• It directly support linguistic formalisms and theories and can compile
them to regular expressions.

• It is of the state of the art in linguistics (phonological and morphological
theories)

• It is of the state of the art in computational linguistics (parameter estima-
tion, special operators etc.).

• It implements new finite-state techniques (weighted automata, semirings,
on-demand computation, network optimizations, multiple tapes, etc.)

• A wide user community can learn to use it.

(b) Compatibility

• It uses elegant and generally correct algorithms.

• It is computationally efficient.

• It can share and exchange data with related tools.

• It can be ported to different machines.

2. Extensibility: The workbench should be easily extensible. This requirement
includes the following:

• It contains interfaces for plug-ins and library calls.

• It supports development of new ideas for algorithms and formalisms.

• It contains components that can be reused in new software.

• It allows adding or changing features of the rule formalism.

483



Nordic Journal of African Studies

• It allows alternative implementations of algorithms and data structures
via encapsulation techniques such as generic programming and wrap-
pers.

• Anybody (knowledgeable) can extend all layers of the workbench.

• Anybody can make commercial and non-commercial derivatives of the
software.

• It contains necessary plug-in and application programmer’s interfaces to
non-GNU licensed components.

3. Availability: The workbench should be freely available. This requirement
includes the following:

• The tool is freely available in source code and other formats.

• Anybody has permission to use the source code for any purpose.

• Everybody has access to developer’s and user’s essential documentation.

• It can be ported and rebuilt by the user after hardware upgrades.

• The user may redistribute the workbench to new users.

• Commercial products can be developed with or from the workbench.

• It does not contain patent-restricted methods in essential parts that cannot
be dropped.

• The development version is available to everybody.

• Anybody is entitled to produce free or commercial support for it.

• It can be varied for different business situations and needs.

• It has an OSI approved license6.

It is possible to argue that the properties of generality, extensibility and free
availability (GEA) are closely related with each other and present a successful con-
cept. For example, the TEX typesetting program7 is a successful piece of software
that is publiclyavailable. While TEX itself has a fixed design, it is both designed to
be programmable and to allow reuse of its source code in new programs – resulting
in very powerfulextensibility. Through its extensibility8, TEX has been proven very
general. While it is true that good programs are more than just a combination of
the three desiderata, the case of TEX still suggests that generality comes best with
extensibility and availability:

6www.opensource.org
7http://en.wikipedia.org/wiki/TeX
8For example, this article has been typeset using new macros for TEX/LATEX.

484



Widely Usable Morphology Workbench: Desiderata

ad-hoc solutions−→professional solutions−→ ubiquitous solutions
specific multi-purpose general (G)
fixed tailorable extensible (E)

in-house proprietary available, common standard (A)

5 SOME FOUNDATIONAL ISSUES

A discussion on the technical requirements and the design architecture of the envi-
sioned workbench would have to answer to the question how a widely usable work-
bench would differ from the existing proprietary or free solutions. Suchtechnical
discussionhas been, however, postponed to a later article under the current topic.

Regardless of technical design details, the definitions of the GEA desiderata —
especially the desiderata of extensibility and availability — bear high resemblance
to typical properties of open source software. Therefore, it is clear that the desiderata
of extensibility and availability can be satisfied only if the workbench is created in
theopen source community.

Because the envisioned GEA-based workbench will be free software, we need
a widely acceptable policy to handle such issues as open source licensing, copyleft
compatibility, and software patents. In the following, I will outline how a practical
policy could be developed.

5.1 CREATING FREESOFTWARE

We must choose alicensing policy that (i) encourages wide contributions to the
workbench development, (ii) facilitates a latent copyleft relaxation for compatibility
and (iii) empowers the preservation of the workbench as free software when com-
patibility is not an issue.

Open source licenses are divided to two categories, copyleft licenses9 and the
others. When a license is acopyleft license, it requires all modified and extended
versions of the licensed software to be free. It does not mean that the software is
not copyrighted. Instead, the copyright holder has the right to decide whether the
work is licensed with a copyleft license. Within the open source community, many
contributors do not like that a modified version of their code is made proprietary by
a commercial developer. Therefore, many open source developers choose a copy-
left license, GNU General Public License (GPL) or Lesser General Public License,
depending on the type of the component they develop.

5.2 PREPARING FORCOPYLEFTRELAXATION

By default, GNU LGPL should be preferred to GPL because many potential con-
tributors would also like to reuse the components of the workbench in commercial

9http://www.gnu.org/licenses/licenses.html\#WhatIsCopyleft

485



Nordic Journal of African Studies

software. Compared to GPL, LGPL allows more freedom in this respect, because an
LGPL-licensed library can be linked to a proprietary software.

It may still happen that LGPL-licensed software cannot be combined with other
software. In such situations, thecopyright holder can resolve the conflict by allow-
ing exceptional uses. To deal with such situations, it is important that the developers
have only a small set of representatives who have the mandate to resolve problematic
situations.

If the number of GPL-licensed contributions increases, we must choose a man-
ageablecopyright policy that allows case-by-case licensing. For this purpose, we
might need to adopt a model similar to Sun Microsystem’sJoint Copyright Agree-
ment (JCA)10 from the very beginning. Goldman and Gabriel (2005) explain why it
is important to adopt such a model from the early stage: it is difficult to impose such
agreements later.

A joint copyright agreement works very well in research groups that can jointly
choose a representative for its members. However, for individual contributors the
legalese of such an agreement might be too much. Because the community and
groups need the possibility to make exceptions to the copyleft policy, it is necessary
that individual contributions would be licensed under apermissive open source
license, such as the MIT license11 or the Boost Software license.12 The latter license
is required, in particular, if the contributed component could later be included to
the Boost C++ library.13 If the individual contributor, however, insists on using a
copyleft license, the community can recommend the use of GNU LGPL, because
LGPL ensures the largest possible applicability.

5.3 DEVELOPING ASTRATEGY FORSOFTWAREPATENTS

We need to develop a strategy for relating the open source code tosoftware patents.
Many finite-state algorithms (some rewriting and replace operators, algorithms for
hyphenation, tokenization, minimization, etc.) are covered by software patents14

although they may be widely used in the scientific community. If such freely avail-
able implementations of patented algorithms were used also in a commercial setting,
patent holders can make life very difficult for the distributor of a free software. For
example, the Linux distributor Red Hat had to remove all MP3 software from its

10http://www.openoffice.org/copyright/copyrightapproved.html
11http://www.opensource.org/licenses/mit-license.php
12http://www.boost.org/more/license_info.html
13http://www.boost.org/
14Patents for finite-state methods have been granted even in Europe. According to Foundation for

a Free Information Infrastructure15, “While the European Parliament rejected almost unanimously
the software patents directive, which would legalese the EPO case law on software patents, the EPO
will be able to go ahead with granting these patents, and these patents will now even be Community
titles (http://wiki.ffii.de/ComPat060118En ).”

486



Widely Usable Morphology Workbench: Desiderata

distribution because of potential licensing conflicts.16

Sometimes a holder of patents tactically licenses patented methods to the open
source community17. A great number of big companies have already started to sup-
port open source community and business models based on open source business
models (Koenig, 2005).

In these scenarios, the open source community has a passive patent strategy. We
may need, however, also an active patent strategy to protect the basis of the open
source development.

6 FUTUREWORK

The current article discussed the GEA desiderata in finite-state morphology. The
space would not allow much wider discussion in one article. The author is working
on further articles on the current topic. After completion, the intent is to submit them
to this journal. The forthcoming articles would address the following needs:

First, there is a need to demonstrate the success and limitations of the finite-state
morphology according to the GEA desiderata. The author has been working on a
survey on the state of the art in the finite-state morphology. The survey includes
more than 75 languages to which finite-state methods have been applied18, some 20
widely available finite-state based tools and open projects, and catalogs a number of
extensions to the widely implemented finite-state based techniques.19 According to
the survey, an ideal or promising finite-state based realization of the GEA desiderata
is still non-existent because the GEA desiderata might be too optimistic to be within
the reach of normal corporate software development. The author has gathered, a list
of realistic improvements that could be implemented in an open source project. Col-
laborative implementation of such features could help to realize the GEA desiderata
to a greater degree.

Second, there is a need for an action plan. In TWOLDAY 2005, the audience
provided a wealth of constructive feedback to the author, on the basis of his initiative
(Yli-Jyrä, 2005). Furthermore, the author have consulted networks of finite-state
experts. There seems to be a wide interest in collaborative work on a finite-state
based infrastructure for morphology. An important aspect of an effective action plan
is the integration of the ongoining efforts to build finite-state libraries and finite-
state compilers. The layered architecture sketched earlier (Yli-Jyrä, 2005) will be

16http://www.iusmentis.com/computerprograms/opensourcesoftware/patentrisks/
17For example, IBM gave 500 patents to the OS community although this costs 10-12 million

dollars per year. According to Bob Sutor from IBM, IBM believes that this is an investment to
expected business opportunities, seehttp://www.coss.fi/fi/ajankohtaista/sutor_navin.html .

18We have counted even grammar fragments.
19The author would gratefully acknowledge further pointers to descriptions of less studied lan-

guages and open source code bases using finite-state methods. The current list is available from the
author.

487



Nordic Journal of African Studies

discussed and elaborated in the action plan.

7 THE SUMMARY

In this article, we have argued that there is a need for a widely usable finite-state
morphology workbench. Then, we have tried to analyzed what it might mean to
have an ideal, “widely usable” workbench. Finally, we elaborated a few fundamental
issues related to licensing of software. There are many relevant issues that we did
not try to outline in this article, due to space limitations.

In forthcoming articles, we plan to elaborate some other aspects in the imple-
mentation of a widely usable finite-state morphology workbench and research in-
frastructure.

8 ACKNOWLEDGEMENTS

The author is grateful to the TWOLDAY 2005 audience for critical remarks and to
many experts for later email correspondence. Kimmo Koskenniemi, Krister Lindén,
Andrś Kornai, Arvi Hurskainen, Michael Cochran, Howard Johnson, Arto Teräs and
Elias Aarnio have personally provided useful feedback based on some extended,
unpublished versions of the article. Portions of an extended version were used as a
basis for the current article.

REFERENCES

Ashby, Simone, Julie Carson-Berndsen, and Gina Joue. 2001.
A testbed for developing multilingual phonotactic descriptions, In Proceed-
ings of Eurospeech 2001, page 4p.
http://citeseer.ist.psu.edu/ashby01testbed.html .

Beesley, Kenneth R. 2004.
Morphological analysis and generation: A first-step in natural language pro-
cessing, In First Steps in Language Documentation for Minority Lan-
guages: Computational Linguistic Tools for Morphology, Lexicon and
Corpus Compilation, Proceedings of the SALTMIL Workshop at LREC
2004, pages 1–8.
http://isl.ntf.uni-lj.si/SALTMIL/ .

Beesley, Kenneth R. and Lauri Karttunen. 2003.
Finite State Morphology, CSLI Studies in Computational Linguistics. Stan-
ford, CA, USA: CSLI Publications.

Bharati, Akshar, Rajeev Sangal, Dipti M. Sharma, and Radhika Mamidi. 2004.
Generic morphological analysis shell, In First Steps in Language Doc-
umentation for Minority Languages: Computational Linguistic Tools

488



Widely Usable Morphology Workbench: Desiderata

for Morphology, Lexicon and Corpus Compilation, Proceedings of the
SALTMIL Workshop at LREC 2004 , pages 40–43.
http://isl.ntf.uni-lj.si/SALTMIL/ .

Bird, Steven and T. Mark Ellison. 1992.
A phonologist’s workbench, In Proceedings of the 15th International Con-
ference of Linguists. Quebec, Canada.
ftp://ftp.cis.upenn.edu/pub/sb/papers/be92/be92.pdf .

Creutz, Mathias, Krista Lagus, Krister Lindén, and Sami Virpioja. 2005.
Morfessor and hutmegs: Unsupervised morpheme segmentation for highly-
inflecting and compounding languages, In Proceedings of the Second Baltic
Conference on Human Language Technologies, pages 107–112. Tallinn.
http://www.cis.hut.fi/mcreutz/papers/Creutz05hlt.pdf .

Daille, Béatrice, Ćedile Fabre, and Pascale Sébillot. 2002.
Applications of Computational Morphology, pages 210–234.
Somerville, MA: Cascadilla Press.

Deo, Ashwini. 2005.
Derivational morphology in inheritance-based lexica: insights from Pān. ini,
manuscript. Department of Linguistics, Stanford University.
www.stanford.edu/%7Eadeo/morph.pdf .

Goldman, Ron and Richard P. Gabriel. 2005.
Innovation Happens Elsewhere. Open Source as Business Strategy. Mor-
gan Kaufmann.
http://dreamsongs.com/IHE/IHE.html .

Hockett, Charles. 1954.
Two models of grammatical description, Word 10:210–231.

Itai, Alon. 1994.
Learning morphology – practice makes good, In R. C. Carrasco and
J. Oncina, eds.,Grammatical Inference and Applications, Second Inter-
national Colloquium, ICGI-94, Alicante, Spain, September 21–23, 1994,
vol. 862 of Lecture Notes in Artificial Intelligence, pages 5–15. Springer-
Verlag.
http://citeseer.ist.psu.edu/itai94learning.html .

Johnson, C. Douglas. 1972.
Formal Aspects of Phonological Description, no. 3 in Monographs on lin-
guistic analysis. The Hague: Mouton.

Kaplan, Ronald M. and Martin Kay. 1994.
Regular models of phonological rule systems, Computational Linguistics
20(3):331–378.
http://acl.ldc.upenn.edu/J/J94/J94-3001.pdf .

489



Nordic Journal of African Studies

Karttunen, Lauri. 1993.
Finite-state lexicon compiler, Technical Report ISTL-NLTT-1993-04-02,
Xerox Palo Alto Research Center.
http://content-analysis/fssoft/docs/lexc-93/lexc93.html .

Karttunen, Lauri. 1994.
Constructing lexical transducers, In 15th COLING 1994, Proceedings of
the Conference, vol. 1, pages 406–411. Kyoto, Japan.

Karttunen, Lauri, Ronald M. Kaplan, and Annie Zaenen. 1992.
Two-level morphology with composition, In 14th COLING 1992, Proceed-
ings of the Conference, vol. I, pages 141–148. Nantes, France.
http://acl.ldc.upenn.edu/C/C92/C92-1025.pdf .

Koenig, John. 2005.
Seven open source business strategies for competitive advantage, Electronic
document, Riseforth Inc.
www.riseforth.com/images/Seven%20Strategies%20-%20Koenig.pdf .

Koskenniemi, Kimmo. 1983.
Two-level morphology: a general computational model for word-form
recognition and production, no. 11 in Publications. Helsinki: Department
of General Linguistics, University of Helsinki.

Koskenniemi, Kimmo. 1984.
A general computational model for word-form recognition and production,
In 10th COLING 1984, Proceedings of the Conference, pages 178–181.
Stanford, California.
http://acl.ldc.upenn.edu/P/P84/P84-1038.pdf .

Matthews, P. H. 1974.
Morphology. Cambridge University Press.

Maxwell, Michael. 1999.
A new program for doing morphology: Hermit Crab, Notes on Linguistics
2(1):11–36.
www.sil.org/computing/hermitcrab/nol_hc_article.doc .

Maxwell, Mike. 2003.
Incremental grammar development using finite-state tools, In EACL 2003
Workshop on Finite-State Methods in Natural Language Processing,
Proceedings of the Workshop, pages 51–58. Agro Hotel, Budapest, Hun-
gary.
http://papers.ldc.upenn.edu/EACL2003/IncrementalChanges.pdf .

Maxwell, Mike, Gary Simons, and Larry Hayashi. 2002.
A morphological glossing assistant, In Proceedings of the International
LREC Workshop on Resources and Tools in Field Linguistics.

490



Widely Usable Morphology Workbench: Desiderata

http://papers.ldc.upenn.edu/LREC2002/Morph_Gloss_Asst.pdf .

Németh, Ĺaszĺo, Viktor Trón, Ṕeter Haĺacsy, Andŕas Kornai, Andŕas Rung, and
István Szakad́at. 2004.
Leveraging the open source ispell codebase for minority language analy-
sis, In First Steps in Language Documentation for Minority Languages:
Computational Linguistic Tools for Morphology, Lexicon and Corpus
Compilation, Proceedings of the SALTMIL Workshop at LREC 2004,
pages 56–59.
http://isl.ntf.uni-lj.si/SALTMIL/ .

Novák, Attila. 2004.
Creating a morphological analyzer and generator for the Komi language, In
First Steps in Language Documentation for Minority Languages: Com-
putational Linguistic Tools for Morphology, Lexicon and Corpus Com-
pilation, Proceedings of the SALTMIL Workshop at LREC 2004, pages
64–67.
http://isl.ntf.uni-lj.si/SALTMIL/ .

Oflazer, Kemal and Sergei Nirenburg, eds. 2003.
Language Engineering of Lesser-Studied Languages, vol. 188 ofNATO
Science Series: Computer & Systems Sciences. Amsterdam, The Nether-
lands: IOS Press.

Raffenspenger, Carolyn. 2004.
Funding research for the common good, The Environmental Forum
page 14.
Reprinted by permission atwww.sehn.org/pdf/jul-aug04.pdf .

Yarowsky, D. and R. Wicentowski. 2000.
Minimally supervised morphological analysis by multimodal alignment, In
38th ACL 2000, Proceedings of the Conference, pages 207–216. Hong
Kong.
http://www.cs.jhu.edu/˜yarowsky/pubs.html .

Yli-Jyrä, Anssi. 2005.
An initiative for an open and extendible finite-state morphology workbench,
Talk presented at TWOLDAY 2005.
www.ling.helsinki.fi/events/TWOLDAY2005/ .

491


