
Nordic Journal of African Studies 14(4): 438–451 (2005)

Computational Description of Verbs in
Disjoining Writing Systems*

ARVI HURSKAINEN
University of Helsinki
LUIS LOUWRENS

University of South Africa
GEORGE POULOS

University of South Africa

ABSTRACT

In this paper we discuss the problems encountered in the morphological description of verbs in
those Bantu languages, which use a disjoining writing system. In one method, verb structures are
first identified and concatenated by using a heuristic pre-processor, and the morphological
description is based on this new writing system. In another method, the morphological description
is performed directly by using the finite state tool package of Xerox. Test languages are
Kwanyama and Northern Sotho. Both methods are evaluated and their limitations discussed,
including the memory problems encountered in describing non-concatenative processes.

Keywords: writing methods, finite state methods, morphology, Bantu languages, reduplication

INTRODUCTION

Many Bantu languages, especially in Southern Africa, have a writing system,
where most verb morphemes preceding the verb stem and some suffixes are
written as separate words. These languages have also other writing conventions,
which differ from the way they are written in other related languages. These two
systems are conventionally called disjoining and conjoining writing systems.
Disjoining writing can be considered simply as an under-specified way of writing,
but for computational description it is a challenge, especially if the system allows
only continuous sequences of characters to be recognised as units of analysis. In
order to reduce unnecessary ambiguity, verb morphemes should be isolated from
such strings of characters that are real words.

There are at least two approaches for handling disjoining writing. (a) Each
continuous string of characters is considered a ‘word’ and ambiguity is resolved

* We wish to thank Lauri Karttunen for introducing part of the solutions for solving the types of
problems discussed here and for testing versions of the Northern Sotho lexicon.

Computational Description of Verbs

after morphological description (Hurskainen 2004a). (b) Disjoining writing is first
converted to conjoining writing, marking the morpheme boundaries, and the
morphological description is carried out on the basis of this new writing form
(Hurskainen and Halme 2001).

In solution (a), each string of characters is described with all possible
interpretations, including non-verbal interpretations. The analysis result will be
heavily ambiguous, and the actual description of the verb structure is carried out
as a post-morphological operation. In order to make the overall disambiguation
process sensible, it would be important to isolate the structure of the verb (i.e. the
verb stem together with its all affixes) and handle it as a single unit. For doing
this, one could consider the method used for identifying inflecting idioms
(Hurskainen 2004a).

Solution (b) requires a complex tokeniser, which first identifies such
sequences of strings that together constitute a verb. This makes it possible to
optimise the input strings to the analyser, which operates on a word-per-line basis.
The use of this kind of tokeniser makes it possible to handle the text as it were
written with a conjoining writing system.

Below we shall discuss problems and solutions involved in the latter
approach. The possibility of constructing a reliable tokeniser for concatenating
verb structures was tested using Kwanyama as a test language. This language was
used in tests, because there was available a detailed description of the verb
structure, a covering list of verbs, and sufficiently texts for testing. The
implementation of the morphological parser of verbs was tested using Northern
Sotho. This language was selected, because it has, in addition to a complex verb
structure, a number of interesting features, including a set of morphophonological
changes in the beginning of the verb stem if preceded by certain prefixes, and
non-concatenative processes in the verb structure. Also two of the writers of this
article are experts in this language.

1. HEURISTIC METHOD FOR IDENTIFYING VERB STRUCTURES

The possibility of constructing a reliable tokeniser needed in solution (b) was
tested for identifying verb structures in Kwanyama, a Bantu language spoken in
Northern Namibia and Southern Angola (Hurskainen and Halme 2001). In this
method, verb candidates were first identified and marked on the basis of the verb
root in text. This was done with the help of a covering list of verb roots. Any word
that fulfilled the criteria of a verb root was marked as a potential verb. Then tests
were made to see whether the verb candidate fulfils other criteria of a verb,
especially a sequence of prefixes and suffixes. If criteria were fulfilled,

 439

Nordic Journal of African Studies

concatenation rules would join the verb prefixes, the stem and the suffixes as a
single word. The example in (1) illustrates the verb structure of Kwanyama.1

(1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
COM IV TAM SC TAM INF NEG IT OC1 OC2+REFL VB FV PL 1SGOC LOC
 o- ha- tu ke shi li- talel-a ko
 ‘we will look it for ourselves’

We see that not all prefixes are written disjointly. Especially the second object
concord, which is written conjointly with the verb stem, complicates the
identification of verbs. Assuming that the beginning of the verb root is marked by
@, then the rule should perform the process illustrated in (2).

(2)
ohatu ke shi li{talela ko > ohatu_ke_shi_litalela_ko

Concatenation rules were written with two alternative methods. By using Beta, the
rules were written concretely, and as a result more than 200,000 rules were
needed. In the second method, Perl was used in writing rules. In it, using regular
expression notation, a total of 153 rules were needed for handling the verb
structures.2

Tests showed that the method of rule writing did not have significant effect on
processing speed. The average speed, using a PC with the processor of 1 GHz and
512 MB RAM, was more than 1,000 words per second, which is sufficient for
most applications.

2. EVALUATION OF THE HEURISTIC TOKENISER

The method described above has two basic problems. First, because the
identification of verbs in text is based on verb roots instead of full verb stems,
over-marking is considerable (32% in tests). Also part of verb prefixes will be

1 Key: COM = comitative affix; IV = initial vowel; TAM = tense, aspect and mood marker; also
including negative markers for finate forms; SC = subject prefix indicating the person or noun
class of the subject INF = infinitive marker; IT = itive marker (“go and ...”); OC1 = object prefix
of the first object of a ditransitive verb; OC2 = object prefix of the second object of a ditransitive
verb; REFL = reflexive object marker, alternative for OC2; VB = verb base, including also
extended verb forms; FV = verb-final vowel; PL = plural addressee; 1SGOC = object marker of
the first person singular; LOC = locative marker; NEG = negative marker of infinitives; FS = final
suffix, including the final vowel and the remote past tense marker.
2 In order to ensure the long-first principle in rule application, the rules were arranged in length
order. For the same reason, combined rules with alternative lengths were avoided, so that a short
variant in a combined rule would not ‘steal’ the string from a longer rule, which had not yet been
tested.

 440

Computational Description of Verbs

marked as verbs, because they have the same form as some monosyllabic verbs.
However, over-marking is not a serious problem, because, if other criteria for a
verb are not fulfilled, concatenation will not be performed.

The second problem is that the rules may concatenate also such sequences of
morphemes, which formally can be a single verb but in the given context are two
separate words. An example of such a problem is in (2).

(3)
kwa {li {wa {hanga > kwa liwa hanga (wrong)
kwa {li {wa {hanga > kwali wahanga (correct)

Note that some prefixes are marked as verbs, because they fulfil the criteria of a
monosyllabic verb. The problem of wrong concatenation can be alleviated with a
post-processing program that separates sequences that were wrongly
concatenated.

If full verb stems could be used as keys for marking verbs, there would be
considerably less over-marking. Because, due to the large number of verbal
extensions, including sometimes several extension suffixes, the construction of
such a full list is not practical, the restriction of the identification key to the verb
root only is a good compromise solution. Obviously by studying carefully, and
with a sufficiently large text corpus, problematic cases, wrong concatenations
could be handled separately. This applies particularly to monosyllabic verbs and
other short verb roots that are sources of wrong concatenation.

The basic principle should be, however, that we make sure that all verbs are
marked, even with the risk of over-marking. Wrong concatenations can be
handled with a post-processing program.

The verb tokeniser of Kwanyama was tested with a text of 30,835 words,
which included 6,584 string-sets to be concatenated. Of these a total of 4,113 were
unique string-sets. The recall, i.e. the ability of the program to find verbs, was
98.6 %. Failing concatenations were mainly due to the fact that not all verbs were
marked. The precision, in other words the ability of the system to make correct
marking and concatenation, was tested with a text of 5,986 words. It contained
1,307 finite verbs, and only 0,2 % of the string-sets were wrongly concatenated.
Therefore, the precision of the system in this test was 99,8 %.

We also tested how well verb structures can be identified using the verb
prefixes alone as marking criteria without previous marking of verb candidates. In
this test a total of 107 concatenations out of 1,307 were wrong. This means that
the recall no doubt is 100 %, but the precision only 92 %. Although the result is
not bad, the method cannot be considered reliable enough for any serious
implementation of a verb tokeniser.

 441

Nordic Journal of African Studies

3. DESCRIPTION OF VERB STRUCTURES

When a verb structure has been identified using a tokeniser, it can be given as a
single input string to the morphological analyser. The analyser can be constructed
on the basis of this form, whatever it is. It can be a fully concatenated verb-form,
with or without morpheme boundary marking, or it can be also in its original
disjoint writing form. The only thing that is important is that the full verb-form is
correctly identified with all its affixes. Below we shall discuss the construction of
a morphological parser of Northern Sotho verbs (Poulos and Louwrens 1994)
based on disjoint writing form. The aim is to construct a complete implementation
that includes all verb structures and all verb stems.

In addition to disjoint writing, the description of the verb involves also such
non-concatenative features as reduplication3 of the verb stem and the constraining
of the co-occurrence of such verb morphemes that are on different sides of the
verb stem. All these phenomena are handled in the following implementation,
which makes use of the finite state methods developed by Xerox (Beesley and
Karttunen 2003). To start with, the verb structure ba ka se sa bonana (they shall
no longer see one another) is described in (4).

(4)
Multichar_Symbols
 ^[^]
LEXICON Root
 SubjPref;
LEXICON SubjPref
 ba+:ba% NegPref;
LEXICON NegPref
 ka+se+:ka% se% ProgPref;
LEXICON ProgPref
 sa+:sa% VStart;
LEXICON VStart
 0:^[{ VStem;
LEXICON VStem
 bon VSuff;
LEXICON VSuff
 VSuffRec;
LEXICON VSuffRec
 +an:an VFinV ;
LEXICON VFinV
 +a:A VEnd;
 +a=Redup:A VEndRedup;

3 In SALAMA (Swahili Language Manager), reduplication was described in the lexicon with
the basic finite state method (Koskenniemi 1983), and the reduplicated forms frequently used were
found from a corpus of 12 million words (Hurskainen 2004b).

 442

Computational Description of Verbs

LEXICON VEnd
 0:}^1^] #;
LEXICON VEndRedup
 0:^2^] #;

We see that in the lower language the blank after the verb prefix is described as a
literal space by inserting the percent character ‘%’ to denote the literal
interpretation of the following character, that is the space. Note that any additional
blanks following the first blank are not interpreted as a space character. Therefore,
there has to be at least two blanks after the morpheme before the continuation
class name, one for the literal blank character and another for separating the
lexical string from the continuation class name.

When marking the lexical blanks in this way, it is assumed that the tokeniser
has converted the text into a word-per-line format in the sense that each multi-
word construction, such as full verb-forms with disjoint parts, is on a line of its
own. If we want to construct a system which recognises also the line feed in its
different varieties and the tab character, we can, in stead of directly marking the
lexical blank in the lexicon, mark it with an arbitrary symbol, e.g. with a literal
underscore ‘_’, and then in rules interpret it to mean all the positions, where the
morpheme can occur in text. An example of such a rule is in (5).

(5)
 %_ -> [" " | "\t" | "\n" | "\r"]+ ;

The lexicon in (4) is constructed so that it handles also the reduplication. In order
to make the upper language more readable and to show clearly the morpheme
boundaries, the morphological tags have been excluded. The lower language is
not yet the surface representation of Northern Sotho but rather a meta-language,
which contains a sequence of characters that are in the form of a regular
expression. This is needed for reduplication to operate. The form of the upper
language and meta-language is illustrated in (6).

(6)
xfst[0]: read lexc < NSotho.lex
Reading from ‘NSotho.lex’
Root...1, SubjPref...1, NegPref...1, ProgPref...1, VStart...1,
VStem...1, VSuff...1, VSuffRec...1, VFinV...2, VEnd...1,
VEndRedup...1
Building lexicon...Minimizing...Done!
2.3 Kb. 41 states, 41 arcs, 2 paths.
Closing ‘NSotho.lex’
xfst[1]: print upper-words
ba+ka+se+sa+bon+an+a
ba+ka+se+sa+bon+an+a{Redup}
xfst[1]: print lower-words
ba ka se sa ^[{bonanA}^1^]
ba ka se sa ^[{bonanA}^2^]

 443

Nordic Journal of African Studies

Particularly important in the lower-side language is the section of the string that is
subject to reduplication. This section is delimited with special multi-character
symbols ^[and ^]. Whatever is between these symbols is a regular expression that
can be repeated n-times. We also see that the actual string to be defined as a
regular expression is enclosed with curly brackets ‘{‘ and ‘}’ for making sure that
the string is interpreted as a regular expression. The multi-character symbol ‘^2’
in the lower string stands for repeating twice the preceding regular expression
enclosed between curly brackets ‘{‘ and ‘}’.

The Xerox tool package contains a compile-replace algorithm, which makes it
possible to include finite state operations other than concatenation into the
morphotactic description (Beesley and Karttunen 2003: 379-380). In this method
of describing non-concatenative phenomena, the initial lexical description is made
by concatenating partial strings, usually morphemes, into well-formed words
through a finite state lexicon structure. This partly abstract lexical description is
mapped to the surface strings by applying morphophonological alternation rules.
While in the usual description the lower language represents the orthographically
correct word forms, in the compile-replace algorithm the initial network (i.e. the
composition of the lexicon and the rules) is left abstract for including meta-
morphotactic descriptions of non-concatenative phenomena.

When processing this kind of description, the morphophonological rules and
lexicon, which are in the form of regular expressions, are first read and composed
into a network. This network contains strings which also include meta-
morphotactic descriptions in the form of regular expressions. The compile-replace
command is applied to the lower side of the initial network, where it finds the
meta-morphotactic descriptions, compiles them as regular expressions and
replaces them in the lexicon network with the new network resulting from the
compilation (Beesley and Karttunen 2003: 381-382). The compilation of the final
network and its operation is demonstrated in (7).

(7)
xfst[0]: read regex < NSotho.rul
Opening file NSotho.rul...
3.6 Kb. 27 states, 249 arcs, Circular.
Closing file NSotho.rul...
xfst[1]: read lexc < NSotho.lex
Reading from ‘NSotho.lex’
Root...1, SubjPref...1, NegPref...1, ProgPref...1, VStart...1,
VStem...1, VSuff...2, VSuffRec...1, VFinV...2, VEnd...1,
VEndRedup...1
Building lexicon...Minimizing...Done!
2.3 Kb. 41 states, 42 arcs, 4 paths.
Closing ‘NSotho.lex’
xfst[2]: compose
2.3 Kb. 41 states, 42 arcs, 4 paths.
xfst[1]: compile-replace lower
4 regular expressions compiled successfully. No errors.

 444

Computational Description of Verbs

2.4 Kb. 43 states, 45 arcs, 4 paths.
xfst[1]: up ba ka se sa bona
ba+ka+se+sa+bon+a
xfst[1]: up ba ka se sa bonana
ba+ka+se+sa+bon+an+a
xfst[1]: down ba+ka+se+sa+bon+an+a
ba ka se sa bonana
xfst[1]: up ba ka se sa bonanabonana
ba+ka+se+sa+bon+an+a{Redup}
xfst[1]: down ba+ka+se+sa+bon+an+a{Redup}
ba ka se sa bonanabonana

If we enter a string where the reduplicated part is composed of two different,
alone legal, verb forms, the test fails.

xfst[1]: up ba ka se sa bonanabona
xfst[1]: up ba ka se sa bonabonana

4. CONSTRAINING THE CO-OCCURRENCE OF MORPHEMES

The full description of the verb in Northern Sotho contains a number of structures,
where the verb-final vowel, or a suffix, constrains the co-occurrence of certain
verb prefixes. An example of such a case is in (8).

(8)
 1SG FUT write VF 1SG write VF
 (a) ke tla bon- a (b) ke bon- E
 ‘I may see in future’ ‘I may see’
 (c) ke bon- e (d) ke bon- ilE
 ‘I see usually’ ‘I have seen’

Here we have four cases, where the marker of the correct word form is the verb-
final vowel or suffix. Because the marker is after the verb stem, it is not practical
to construct the finite state lexicon separately for each case.

The Xerox tools offer a method for handling such cases. A set of flag
diacritics can be used in the lexicon for controlling the co-occurrence of certain
morphemes. In this implementation, we have used a pair of the P-type and R-type
flag diacritics for controlling the morpheme sequences (Beesley and Karttunen
2003: 353-355). With a P-type (positive) flag diacritic, which is placed in the
string of characters on the left side of the verb stem, the named feature is set to a
given value. The corresponding R-type (require) flag diacritic is placed in the
morpheme which functions as the constraining trigger. If the R-type flag diacritic
finds in the same string a flag diacritic that has the same feature and the same
value as it itself, the test succeeds and the string is accepted. An example of the
use of this method is in (9).

 445

Nordic Journal of African Studies

(9)
Multichar_Symbols
 ^[^]
 @P.PAST.ilE@ @R.PAST.ilE@
 @P.SBJN.a@ @R.SBJN.a@
 @P.SBJN.E@ @R.SBJN.E@
 @P.HABIT.e@ @R.HABIT.e@
 @P.NORM.a@ @R.NORM.a@
LEXICON Root
 SubjPref;
LEXICON SubjPref
 ke=Sbjn+@P.NORM.a@:@P.NORM.a@ke% FutPref;
 ke=Sbjn+@P.SBJN.E@:@P.SBJN.E@ke% VStart;
 ke=Habit+@P.HABIT.e@:@P.HABIT.e@ke% VStart;
 ke=Perf+@P.PAST.ilE@:@P.PAST.ilE@ke% VStart;
LEXICON FutPref
 tla=Fut+:tla% VStart;
LEXICON VStart
 0:^[{ VStem;
LEXICON VStem
 bon VFinV;
LEXICON VFinV
 +a@R.NORM.a@:@R.NORM.a@A VEnd;
 +a=Redup@R.NORM.a@:@R.NORM.a@A VEndRedup;
 +E@R.SBJN.E@:@R.SBJN.E@E VEnd;
 +E=Redup@R.SBJN.E@:@R.SBJN.E@E VEndRedup;
 +e@R.HABIT.e@:@R.HABIT.e@e VEnd;
 +e=Redup@R.HABIT.e@:@R.HABIT.e@e VEndRedup;
 +ilE@R.PAST.ilE@:@R.PAST.ilE@ilE VEnd;
 +ilE=Redup@R.PAST.ilE@:@R.PAST.ilE@ilE VEndRedup;
LEXICON VEnd
 0:}^1^] #;
LEXICON VEndRedup
 0:}^2^] #;

Flag diacritics have to be defined in the section Multichar_Symbols and they are
written so that they are visible on the upper and lower language in order to operate
correctly in applying to both directions. In (10) are examples of how the
constraints function when the meta-language is a lower language.

(10)
xfst[1]: print upper-words
ke=Sbjn+tla=Fut+bon+a=Redup
ke=Sbjn+tla=Fut+bon+a
ke=Sbjn+bon+E=Redup
ke=Sbjn+bon+E
ke=Habit+bon+e=Redup
ke=Habit+bon+e
ke=Perf+bon+ilE=Redup
ke=Perf+bon+ilE

 446

Computational Description of Verbs

xfst[1]: print lower-words
ke tla ^[{bonA}^2^]
ke tla ^[{bonA}^1^]
ke ^[{bonE}^2^]
ke ^[{bonE}^1^]
ke ^[{bone}^2^]
ke ^[{bone}^1^]
ke ^[{bonilE}^2^]
ke ^[{bonilE}^1^]
xfst[1]: up ke tla ^[{bonA}^2^]
ke=Sbjn+tla=Fut+bon+a=Redup
xfst[1]: up ke ^[{bonE}^1^]
ke=Sbjn+bon+E
xfst[1]: down ke=Habit+bon+e=Redup
ke ^[{bone}^2^]
xfst[1]: down ke=Habit+bon+e
ke ^[{bone}^1^]

We see that only the correct forms are accepted, although the lexicon without flag
diacritics would allow the realisation of all types of verb endings listed in the
lexicon.

The tests in (11) show that the constraints work also when the final net for
describing the surface language is compiled using the compile-replace lower
function.

(11)
xfst[1]: compile-replace lower
8 regular expressions compiled successfully. No errors.
3.6 Kb. 84 states, 93 arcs, 32 paths.
xfst[1]: up ke tla bona
ke=Sbjn+tla=Fut+bon+a
xfst[1]: up ke bone
ke=Habit+bon+e
xfst[1]: up ke bonE
ke=Sbjn+bon+E
xfst[1]: up ke bonilE
ke=Perf+bon+ilE
xfst[1]: up ke bonebone
ke=Habit+bon+e=Redup
xfst[1]: up ke tla bonabona
ke=Sbjn+tla=Fut+bon+a=Redup
xfst[1]: down ke=Perf+bon+ilE
ke bonilE

5. IMPLEMENTING THE FULL VERB SYSTEM

The full description of the Northern Sotho verb is much more complicated than
what is described above. The morpheme slots, which mark agreement for each
noun class, have a total of twenty alternative prefixes, including first and second

 447

Nordic Journal of African Studies

person singular and plural. Morpheme slots of this type are (a) the subject prefix,
which can be repeated after tense-aspect marking in some forms, and (b) the
object prefix. Also verb extensions increase the number of possible forms. An
example of alternative morphemes in the subject prefix slot is in the extract from
the morphological lexicon in (12).

(12)
Lexicon SubjPref
SP-1SG+:ke% NegTensePrefProgPref;
SP-1PL+:re% NegTensePrefProgPref;
SP-2SG+:o% NegTensePrefProgPref;
SP-2PL+:le% NegTensePrefProgPref;
SP-1+:o% NegTensePrefProgPref;
SP-2+:ba% NegTensePrefProgPref;
SP-3+:o% NegTensePrefProgPref;
SP-4+:e% NegTensePrefProgPref;
SP-5+:le% NegTensePrefProgPref;
SP-6+:a% NegTensePrefProgPref;
SP-7+:se% NegTensePrefProgPref;
SP-8+:di% NegTensePrefProgPref;
SP-9+:e% NegTensePrefProgPref;
SP-10+:di% NegTensePrefProgPref;
SP-14+:bo% NegTensePrefProgPref;
SP-15+:go% NegTensePrefProgPref;
SP-16+:go% NegTensePrefProgPref;
SP-17+:go% NegTensePrefProgPref;
SP-18+:go% NegTensePrefProgPref;

Some amount of complexity is added also by the object prefix of the first person
singular, which is a nasal. It causes several types of sound changes in the first
phoneme of the verb stem, depending on the initial sound of the stem. The
phonological processes caused by the nasal object prefix are described in (13).

(13)
N+b > mp N+m > mm
N+bj > mpS N+r > nth
N+f > mph N+s > ntsh
N+g > nkg N+S > ntSh
N+h > nkh N+y > nki
N+j > ntS N+w > mku
N+l > nt N+V > nkV

These prefixes are written conjunctively, although the rest of the object prefixes
(which do not cause sound changes) are written disjunctively. This requires that
the object prefixes of the first person singular have to be handled separately, either
by rules or directly in the lexicon. In the current implementation they were
described in the lexicon. This means that those verb stems that undergo sound
changes have to be listed separately in the lexicon system and a route from the

 448

Computational Description of Verbs

prefix structure, bypassing the normal object prefix sub-lexicon, has to be
constructed for them.

There are also a number of structures, where the verb-final A is realised as E
(open) or e (closed), depending on the structure concerned. A set of flag diacritics
is applied for constraining the co-occurrence of such morphemes that would
produce ungrammatical constructions.

The normal compilation of the lexicon of this size and complexity into a
transducer is no problem, although the verb structure produces more than 4 billion
paths. The memory problem will be encountered when ‘compile-replace lower’ is
applied to this initial network.4

It is possible to reduce the number of paths by merging identical morphemes
in a morpheme slot into a single entry and return them into the original form in the
post-processing phase. By this method, the maximum number of morphemes in a
morpheme slot is reduced from twenty to eleven and the number of paths is
reduced accordingly. The lexicon in (12) can be written in an under-specified
form as shown in (14).

(14)
Lexicon SubjPref
SP-1SG+:ke% NegTensePrefProgPref;
SP-1PL+:re% NegTensePrefProgPref;
{SP-1}{SP-2SG}{SP-3}+:o% NegTensePrefProgPref;
{SP-2PL}{SP-5}+:le% NegTensePrefProgPref;
SP-2+:ba% NegTensePrefProgPref;
{SP-4}{SP-9}+:e% NegTensePrefProgPref;
SP-6+:a% NegTensePrefProgPref;
SP-7+:se% NegTensePrefProgPref;
{SP-8}{SP-10}+:di% NegTensePrefProgPref;
SP-14+:bo% NegTensePrefProgPref;
{SP-15}{SP-16}{SP-17}{SP-18}+:go% NegTensePrefProgPref;

We see that, for example, the prefix go has four interpretations, each of which is
described on the upper side, but the description requires only one path for it. The
analysis result can then be easily transformed to meet the requirements of further
processing, such as disambiguation.

Another, and more efficient, method for handling the memory problem is to
cut the lexicon into parts, so that only the section requiring a regular expression
notation, i.e. the verb stems, will be compiled with compile-replace lower.
Because the verb reduplication concerns the verb stem only, the section of
prefixes can be treated as a partial lexicon of its own. Also the part of the lexicon
that undergoes the compile-replace operation can be cut into parts. For test
purposes, the verb stem lexicon was compiled with the compile-replace operation
in two parts. Then the three partial compiled lexicons, i.e. the prefix lexicon and

4 For discussion on memory problems see Beesley and Karttunen 2003: 418-420.

 449

Nordic Journal of African Studies

two verb stem lexicons were pulled together as a single net. An example of the
sequence of operations is in (15)

(15)
read lexc < VerbsNorm.lex
compile-replace lower
save VerbsNorm.net
clear stack

read lexc < VerbsObj.lex
compile-replace lower
save VerbsObj.net
clear stack

read lexc < Pref.lex
save Pref.net
clear stack

regex @"Pref.net" [@"VerbsNorm.net" | @"VerbsObj.net"];

eliminate flag SG1
save Sotho.net

Using this method, it was possible to compile the full Northern Sotho verb lexicon
with more than 4 billion paths. The total compilation time, using a PC with the
processor of 1 GHz and 512 MB RAM, was less than two minutes.

CONCLUSION

The experiments with Kwanyama and Northern Sotho suggest that it is possible to
describe the morphology of Bantu languages, including reduplication and other
types of non-concatenative morphology, with finite state methods. Languages that
allow two object prefixes or a relative prefix have a more complicated structure
than Northern Sotho. However, using the method of cutting the lexicon into
sections for compilation, the memory problems can be solved. Tests also show
that it is possible to describe disjoint writing and verb reduplication as well as
constrain the co-occurrence of morphemes within the same system. However, a
carefully designed tokeniser is a prerequisite for identifying verb structures in
text.

 450

Computational Description of Verbs

BIBLIOGRAPHY

Beesley, Kenneth and Karttunen, Lauri, 2003.

Finite State Morphology. Series: CSLI Studies in Computational
Linguistics. Stanford: Center for the Study of Language and Information.

Hurskainen, Arvi, 2004a.
Optimizing Disambiguation in Swahili. In Proceedings of COLING-04,
The 20th International Conference on Computational Linguistics, Geneva
23-27.8. 2004. Pp. 254-260.

Hurskainen, Arvi, 2004b.
Swahili Language Manager: A Storehouse for Developing Multiple
Computational Applications. Nordic Journal of African Studies 13(3):
363-397. Also in: www.njas.helsinki.fi

Hurskainen, Arvi and Halme, Riikka, 2001.
Mapping between Disjoining and Conjoining Writing Systems in Bantu
Languages: Implementation on Kwanyama. Nordic Journal of African
Studies 10(3): 399-414.

Koskenniemi, Kimmo, 1983.
Two-level morphology: A general computational model for word-form
recognition and production. Publications No.11. Department of General
Linguistics, University of Helsinki.

Poulos, George and Louwrens, Louis J. 1994.
A Linguistic Analysis of Northern Sotho. Pretoria: Via Afrika Ltd.

 451

